11, P. B. Visscher, "Escape rate for a Brownian particle in a potential well," Phys. Rev., B13, No. 8
(1976).

12. C. Blomberg, "The Brownian motion theory of chemical transition rates,” Physica (Utrecht), A86, No,1
1977).

13, R. 8. Larson and M. D. Kostin, "Kramers' theory of chemical kinetics. Eigenvalue and eigenfunction
analysis,” J. Chem. Phys., 69, No. 11 (1978). .

14, L. D. Landau and E, M. Lifshits, Quantum Mechanics [in Russian], Fizmatgiz, Moscow (1963).

15. I K. Kikoin (ed.), Tables of Physical Quantities, Handbook {in Russian], Atomizdat, Moscow (1976).

16. K. P. Mishchenko and A. A. Ravdel' (eds.), Short Handbook of Physical and Chemical Quantities [in
Russian], Khimiya, Leningrad (1972).

17. V. N, Kondrat'ev, Rate Constants of Gas-Phase Reactions [in Russian], Nauka, Moscow (1970).

DETERMINATION OF THE DIMENSIONS OF THE SATURATION
ZONE FOR INFILTRATION FROM A CHANNEL WITH A
SHALLOW WATER DEPTH

E. N. Bereslavskii and L. A. Panasenko UDC 551,491.,5

A hydrodynamic solution has been considered [1-4] for the planar stationary case of a freshwater lens
established by infiltration in accordance with Darcy's law from a channel involving the displacement of saline
groundwater from the channel zone, It is assumed that the depth of water in the channel is infinitely shallow
and that the flow factor that compensates for the loss from the channel is evaporation from the free surface,
Here we examine infiltration from a channel into a layer of homogeneous isotropic soil of thickness T with a
horizontal impermeable layer underneath, This case is a limiting one for the above problem when the density
of the saline water increases without limit, The solution is found as in [1-4] by the method of [5], which is
based on the analytical theory of ordinary differential equations. The canonical region is taken as the region
for which the characteristics of the filtration flow can be derived in closed form in terms of certain special

functions.

In view of the symmetry of the infiltration region we restrict consideration to the right-hand half, which
is shown schematically in Fig. 1. The bottom of the channel is represented by a horizontal line of length 21,
With the coordinate system shown in Fig. 1, we locate the plane of potential comparison in the plane y = 0, and
then the following conditions are obeyed at the boundary of the infiltration region:

y=0,¢, =0 on AD, z = 0,9, =000 AB,y = T,9, =0 on BC,

1
@, 1y =0, ¢, + e,z — e[, on(CD, 1)

where wy = @p + i is the complex filtration potential referred to the filtration coefficient, with ¢, the re~
duced potential for the filtration rate and . the reduced current function, while z =x + iy is the complex co-
ordinate in the infiltration region and &, is the reduced evaporation rate,

As the auxiliary region we take half the plane of w in Fig. 2, In the method used here, the functions dw/
dw and dz /dw are unknowns to be determined as the solutions to a certain linear differential equation of the
Fuchs class with regular singular points. We first consider the behavior of the functions dw /d¢ and dz /dg,
where ¢ is the upper half-plane, and we find that the characteristic parameters of these functions near the
singular points have the following values: near point A (£ =—a)1/2, —1/2), near point B (£ = 0)1/2, 0),
near point C (¢ =1)(w/2—-1/2, —v/2—1/2), and near point D (£ = «)(3/2, 2), where v =1 — 2/m arctanvVe,,
and the singularity at point ¢ =—a can be eliminated.

The solution that satisfies the conditions of (1) takes the form

do Vl: sh vw dz ch v @)

dw T Todw Veblw tfachln

1/sh2 wa ch’w

where A is some real constant.
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We obtain the equation for the right branch of the free surface DC if we separate the real and imaginary
parts in the second equation of (2) and then integrate them. This gives

w
s j___s_hﬂdt____
2 Y ]/ch2t+ash2t’
3)

chvtdt
I/ch2 t+ash®t

x =1+ Asin
O <L w= o0).

w
v
y:-—-—ACOS—z—-jl
0

We successively integrate the second of the expressions in 2) from point A to point D, from point B to point A,
and from point B to point C, which gives correspondingly

Fid v
l_AcosbJ" cos —5~ tdt i @)
o '\/i % Vcos Zb—costi ’
7 A 222 Py, (cos 2b); (5)
2
AT cosh / 9
L= ——_—WP\-:\_ cos ub)’ (6)
2 cos 5~ 2

where b is a constant related to a by a = tan?b, P, (z) is a spherical Legendre function of the first kind with
index v [6], and Py(z) = Fv, 1 +v,1, 1—2)/2); F(a, 8, v, z) is hypergeometric function with parameters
o, B, and v.

From Egs. (4)-(6) we constructed a graph for the function L/ T with arguments ! / T and &, (Fig. 3).*
In conclusion we note that / —~ (2 /7) lntan (b/2) and L — = for &1 — 0.

We are indebted to Professor S. N, Numerov for a discussion of this study and his useful remarks.
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INFILTRATION OF A SALT SOLUTION INTO
A SWELLING SOIL

V. I. Pen'kovskii UDC 624.131.6

The physicochemical and hydraulic parameters of soils are largely dependent on the content of clay
minerals, which make up more than half of all sediments in the earth's crust. The lattice surfaces of the clay
particles bear negatively charged oxygen ions, and therefore soils are basically cation-exchange materials
capable of taking up cations from an electrolyte and exchanging equivalent amounts of positively charged ions.
A dry clay soil on wetting by water or a solution swells and absorbs the water and solutes, The cause of the
swelling is hydration of the ions in the hydrophylic groups in the soil. The extent of the swelling is dependent
on the hydrated radius of the ion and the exchange capacity of the soil-absorbing complex. The swelling is
accompanied by coalescence of colloidal particles, which leads to an increase in the amount of relatively im-
mobile water [1, 2] and a substantial reduction in the filtration capacity of the soil.

The converse phenomenon is peptization or particle dispersion, which is accompanied by a reduction in
the amount of bound water and improvement in the permeability, as is observed when an electrolyte infiltrates
into a soil containing fresh water. Experiments in the field and in the laboratory with soil systems [3, 4] show
that the balance between peptization and coalescence may produce large reductions or increases in the perme-
ability of a given specimen of natural soil. It is important to consider these phenomena in developing methods
of calculating the water-salt conditions in soils during irrigation and draining, as well as in research on the
stability of earth dams and related problems,

Here we consider a model case of the infiltration of fresh water into a clay soil whose skeleton retains a
certain amount of salt solution with a given concentration.

1. Formulation. The theory of double electrical layers implies that the concentration C; in moles /liter
of ion i in the solution surrounding the negatively charged surface of a clay particle is [5] given by

Ci = C{exp[— zie (b — V)/ET],

where z; is the valency of the ion, e is the electromc charge, ¥ = ¢(y) is the electrical potential, k is Boltz-
mann's constant, T is absolute temperature, C0 and y” are the values of the equilibrium concentration and elec-
trical potential, respectively, as measured far from the surface, and y is a coordinate measured along the
normal to the surface of the particle. The solution in an elementary volume at a certain distance y will be
attracted to the charged surface under the action of the electric field with a force

e Nye \ [ ( w")}
Zz Ci-igon d_/ = Toc0" Ezc exp dp,

where N, is Avogadro's number and the summation is taken over each ion (z; > 0 for a cation and z; < 0 for an
anion). After integration of this expression with respect to p from p’top and with respect to ¥ from ¥ to y we
get the value of the excess pressure (swelling pressure) Ap = p — p, acting near the surface of a colloidal par-
ticle:

Ap = 1000 S‘ (Cz - C?) ’ (1.1)

i
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